
Efficient Retrieval of User Contents in MANETs
Marco Fiore, Claudio Casetti, Carla-Fabiana Chiasserini
Dipartimento di Elettronica, Politecnico di Torino, Italy

Email: firstname.lastname@polito.it

Abstract—We consider a cooperative environment in wireless
mobile networks where information is exchanged among nodes
in a peer-to-peer fashion. We apply a pure peer-to-peer approach
(i.e., without the intervention of servers) and we seek to devise an
efficient query/response propagation algorithm. Our approach,
called Eureka, identifies the regions of the network where the
required information is more likely to be stored and steers the
queries toward those regions. To discriminate among regions, we
introduce the concept of information density and a procedure that
allows nodes its estimation. The effectiveness of our scheme is
evaluated through simulation in a vehicular environment with
realistic mobility models.

I. INTRODUCTION

A mobile ad hoc network (MANET) consists of wireless
devices that communicate over bandwidth-constrained links.
The wireless nodes are free to move, join or leave the network
– factors that, along with the time-varying behavior of the
wireless channel, lead to a highly-dynamic network system.
Applications on top of MANETs often require a device to
use resources/services located at a gateway node or at another
user device. Thus, given the network characteristics, two
fundamental problems arise: (i) how to discover services and
resources available at other nodes in the MANET, and (ii) how
to transfer information between two network nodes, possibly
with the help of intermediate devices when no direct link
exists.

In this work we look at the MANET as a peer-to-peer
network, where user nodes not only require content delivery
but also act as content providers. Our aim is to provide mobile
users with data services in an effective manner, despite the
scarcity of bandwidth and the intermittent connectivity due
to the highly-dynamic nature of MANETs. We develop a
solution, named Eureka, whose key idea is to exploit the
information density concept and allow users to estimate where
in the MANET the information they are looking for can be
found. Our approach yields several advantages: (i) waste of
bandwidth is avoided by sensibly (and selectively) forwarding
content queries; (ii) not only query overhead is reduced,
but also fewer duplicated reply messages are sent back to
the requesting node; (iii) in a network where a contention-
based MAC is used, the selective forwarding of queries and
reduction of duplicates lowers the collision probability, hence
the congestion level; (iv) the number of successful deliveries
and the system responsiveness remain almost unchanged with
respect to flooding-based strategies, and even improve as the
number of content items grows; (v) the use of GPS is not

required, making our solution suitable for various wireless
environments.

A viable application of peer-to-peer MANETs is in the field
of vehicular networks [1], [2], where the constraints imposed
by the road topology limit the regions where the information
is to be sought. In this case, it is of the utmost importance
to minimize the transmission overhead toward sections of the
network where the chances of successful information retrieval
are slim. At the same time, the highly mobile environment
typical of vehicular networks provides an interesting challenge
to the performance of a peer-to-peer application. For these
reasons, after setting the description of our proposed approach
within the general framework of MANETs, we focus on the
benefits that can be attained when it is applied to vehicular
networks. A discussion of related works can be found at the
end of the paper.

II. SYSTEM AND ASSUMPTIONS

We consider a MANET and one or more gateway nodes that
may be either fixed or mobile. Each user node in the MANET
is equipped with a data cache and may wish to access the
information stored elsewhere in the network, e.g., at one or
more gateways or at other nodes. Connectivity among users
and between user and gateways is, however, spotty and cooper-
ation among users is highly desirable. Targeting a solution that
must be suitable for different network environments, we do
not require nodes to be equipped with additional localization
hardware, such as GPS.

The cooperative environment we are addressing falls within
the category of peer-to-peer (P2P) networking, allowing users
to share files on their own host computers. Unlike tradi-
tional client-server networking, peer nodes simultaneously act
as both “clients” and “servers” to the other nodes in the
network. Coordination among nodes is achieved in several
ways, although, for the purpose of the present work, we just
consider pure P2P: peers act as clients and servers, and there
is no central coordination by one or more servers. Indeed,
any attempt at providing coordination would suffer from the
intermittent nature of connections in a MANET.

Our work specifically tackles the issue of controlled broad-
cast of queries by devising a solution that allows the propa-
gation of queries only towards regions of the network where
the information is more likely to be cached. To discriminate
among such regions, we define a quantity called information
density, and a procedure that lets nodes estimate it.

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

10

Before detailing our solution, we briefly introduce the
network scenario and the basic functionalities required in the
system for content request and delivery [3]. We assume that
N distinct information items, such as web documents or data
files, are available at the gateway node(s) and may be requested
by users. Each information item is further divided into single
downloadable units, called chunks, each small enough to fit
in a single MAC frame. When a user node seeks a specific
information item, it advertises to the system which chunks it is
missing. The missing chunks are then retrieved from (possibly)
different sources, following a procedure that is general enough
to apply to different network systems. Such procedure is based
on a cross-layer approach, involving the application, network
and MAC layers, and does not assume the use of any specific
routing protocol. The basic features that are required in the
system for information request and delivery are outlined below.

• Each user application requests an information item not
in its cache, say information item i (1 ≤ i ≤ N), with
rate λi. Upon a request generation, the node broadcasts
query messages, each for as many as C chunks of the
information item. We assume that all nodes know by de-
fault the number of chunks into which every information
item is divided, as well as the chunks sequence number.
Queries for missing chunks are periodically issued until
the information item is fully received.

• A node receiving the query and caching one or more of
the requested chunks sends them back to the requesting
node, through an information message. If the node does
not own any of the requested chunks, or it owns only a
few of them, it can decide whether to rebroadcast a query
for the missing chunks. If it decides to do so, it stores
routing details of the query (among others, the query ID,
its source address and the address of the node from which
the query was received), and sets the query status for the
missing chunks to pending.

• Once created, an information message is sent back to
the query source along the same path the request came
from. The information message is conveyed through a
unicast transmission at the MAC layer, exploiting the
query routing details that have been stored by the node
application on the way there. No action is required at the
network layer. Also, all nodes are able to promiscuously
listen to the channel at the MAC layer: this gives the
nodes the opportunity to know that a pending query has
been satisfied elsewhere and set the status of the retrieved
chunks to solved, thus avoiding the relay of duplicated
information messages.

• Information chunks retrieved by the requesting node are
locally cached and then dropped at a rate of µ chunks
per second.

III. INFORMATION DENSITY-DRIVEN RETRIEVAL:
MOTIVATION AND DESCRIPTION

A critical aspect of the information sharing mechanism
described above is the propagation of query messages in the

network. On the one hand, queries for information chunks
must be forwarded by relays until they reach nodes holding
such chunks, and some redundancy in forwarding is necessary
to compensate for the unreliable nature of broadcast trans-
mission of queries (i.e., no acknowledgments). On the other
hand, congestion deriving from excessive spreading and chunk
duplication must be limited.

The simplest solution for query propagation is plain flood-
ing of requests, but this is hardly viable in tightly-meshed,
bandwidth-hungry networks where congestion is more than
likely. To counter the drawbacks of flooding we design our
approach along the guidelines summarized below. The first two
are well-known techniques that we include in our approach,
while the third solution is part of our contribution.

1) Introduction of a query time to live (TTL) to shorten the
reach of broadcast queries. A balance should be stricken
between small values of TTL, which limits the success
probability of a query, and query load. Such balance is
highly dependent on the network scenario [4], [5].

2) Introduction of a query lag time at each relay, to delay
the propagation of a request in the hope that a node in the
neighborhood returns a response (thus making any fur-
ther query propagation useless). A similar mechanism is
used, for instance, in DSR to prevent route reply storms.
Although the query lag time and the TTL concur in
establishing a mitigated flooding, further improvements
are necessary: if the requested chunks are not found in
the neighborhood of the query source, queries propagate
as far as the TTL allows them in a fashion resembling
that of plain flooding.

3) Targeting areas of the network where the requested
information is more likely to be cached. To this end, it
is crucial that requests be forwarded only towards those
nodes in the network that might cache the requested
information, hardly an easy task in a MANET where
the topology changes rapidly, and limited-memory nodes
cache only a few information chunks. Relying on GPS-
aided routing (such as [6]) to identify and reach a peer
holding the requested information proves ineffective due
to connectivity and information volatility (beside being
subject to coverage black-outs of GPS signals). Our
idea, instead, is to introduce the concept of information
density, i.e., the amount of information cached by nodes
in a specific area, and to exploit it to decide where
queries must be forwarded to.

In order to implement the scheme described above, each
query header must include a HOP COUNT field, initialized to
TTL and decremented by 1 at each relay. Also, each node
computes an information density estimate in a distributed man-
ner and independently for each information item, as detailed
in Sec. IV. A node generating a query adds to the query
header its own density estimate for the requested information
(ESTIMATED DENSITY field). Nodes receiving the query have
the option to act as relays or not, by checking the information

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

11

density estimate they computed against the one stored in the
query message. Since we want requests to be propagated
towards information-denser areas, we let nodes forward a
query only if their own estimate is higher than that carried
by the query 1. Such forwarding process is run independently
for each query message, which makes the scheme robust to
very fast changes in network topology and/or information
distribution. In Sec. VI we show that this scheme is capable of
reducing the number of query messages as well as the number
of duplicated replies, while preserving, if not improving, the
number of solved requests and the query response time.

IV. INFORMATION DENSITY ESTIMATION

We define the information density function, δi(x, y), as
the spatial density of information chunks cached at nodes
participating in the network, around a point whose spatial
coordinates are (x, y). The subscript i refers to the information
item i, with 1 ≤ i ≤ N . We measure the information density
in copies/m2 (in case of uni-dimensional topologies such as a
highway scenario, we consider δi(x) measured in copies/m).

Our aim is to provide each node in the network with an
estimate of the information density in its proximity, so that it
can choose whether to forward queries or not according to such
estimate. Instrumental to the definition of “node proximity” in
our case is the definition of reach range of a generic node n,
as its distance from the farthest node that can receive a query
generated by node n itself. The reach range obviously depends
on the query TTL and is bounded by the product of TTL and
the nodes radio range. Notice that Eureka uses the difference
between estimates of the information density computed at
two nodes (i.e., locations), rather than their absolute values.
Therefore it is not important to us that the estimates match
the absolute values of the actual density, but that the density
estimates over the network area closely reflect the actual
information density as far as the trends are concerned.

The process we devise to estimate the information density
is fully distributed and is run by all nodes participating in the
network. The process amounts to merging estimates observed
by each node on its own and estimates received by neighboring
nodes. At each sampling step j, a node n computes an
information density sample si,j(n) for each information item i

it is aware of 2, by using information captured within its reach
range. It then filters the computed samples through a Moving
Average (MA) algorithm.

More specifically, the sample si,j(n) represents the es-
timated number of new copies of chunks belonging to an
information item i which were created within reach range of
node n, during sampling step j. New copies are weighted by
their distance from node n, so that new, close-by copies have
a greater impact on the sample than those cached far from

1To account for inaccuracies in the estimation process, a node rebroadcasts
the query if its own estimate is at least 75% as great as the estimate of the
query source

2When a node has to process a query for an information item it is not
aware of, it considers the corresponding density estimate to be equal to zero

the tagged node. Each sample includes two contributions. The
first one is a sample locally computed by node n considering
all generated, overheard and received information messages,
and it is referred to as sl

i,j(n). The second one is a distributed
sample, computed by node n from samples advertised by its
neighboring nodes, and it is referred to as sd

i,j(n). These two
contributions are detailed in Sec. IV-A and Sec. IV-B, while
the overall sample computation is described in Sec. IV-C.

In the MA filter we use, the most recent W samples have
a greater impact on the filter output, while the contribution
of older samples is exponentially decreased at each sampling
step. The value returned by the filter at step j is the information
density estimate as seen by node n for the i-th information

item, δ̂i,j(n). The sampling frequency fc is set as a function
of the cached chunks drop rate µ and the filter parameter W .
A detailed description of the MA filter is given in Sec. IV-D.

A. Local information density sample

Consider the j-th sampling interval and information item
i, node n computes the local part of the information density
sample, sl

i,j(n), as follows.

a) If node n generates a reply information message con-
taining chunks of information item i, as an answer to a
query for some chunks it owns, then a new copy of such
chunks is going to be cached at the node that generated
the relative query. Node n must therefore account for the
presence of such new copy at a distance hQ, which is
equal to the number of hops covered by the query, as
shown in the upper plot in Figure 1. This distance can
be retrieved by looking at the query HOP COUNT field.
A contribution

1 − hQ − 1
TTL

is then added to the current density sample sl
i,j(n). This

value ranges between 1
TTL if the new copy is cached

TTL hops away, while it increases up to 1 if the node
that generated the query is within transmission range of n.

b) If node n receives a new transiting information message,
i.e., a message containing a chunk considered as pending
(as illustrated by the lower plot of Figure 1), it must
account for: i) the presence of a new copy of the chunk
that will be cached by a node at a distance hQ hops
and ii) the presence of an existing copy that is cached
at a distance hI hops. The hQ value can be retrieved
by looking at the query list entry (HOP COUNT field),
while the hI value can be found by looking at the
HOP COUNT field of the information message header that
records the number of traversed hops. Thus, in this case
the following contribution is added to the current density
sample sl

i,j(n):
(

1 − hQ − 1
TTL

)
+

(
1 − hI − 1

TTL

)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

12

query source node

QI

h Q

relay noderelay nodechunk owner node

chunk owner node relay node

relay node

QI R

Qh

query source node

h I

Fig. 1. Representation of case a) (upper plot) and case b) (lower plot).
Upper plot: hQ value for node I sending an information message back to
the requesting node Q. Lower plot: hQ and hI values for relay node R with
respect to the query source Q and node I caching the information chunks

As in case a), the above expression weighs both the new
and the existing chunk copies by their distance from node
n. Note that this behavior is the same no matter whether
the receiving node is the final recipient of the information
chunk, a relay node in the return path, or a node just
overhearing the passing message.

c) The last case accounts for the reception of an information
message whose contribution must not (or cannot) be
related to a corresponding query. This may happen for
two reasons: either the corresponding query list entry
status is set to solved (which means that the message
is considered as duplicated information), or no query list
entry is found (which means that the node moved within
transmission range of nodes in the return path after the
query was generated and propagated by these nodes). In
either case, only the contribution due to the presence of
an existing copy is considered and is computed as:

1 − hI − 1
TTL

The local information density sample sl
i,j(n) is calculated

by summing the three contributions from cases a), b), and c),
weighted by the number of their occurrences.

B. Distributed information density sample

The second contribution to the information density estimate,
i.e., the distributed sample sd

i,j(n), is calculated by a node n

using the local information density samples advertised by its
neighbor nodes. Indeed, every time a node m generates or
relays a query for some chunks of information item i, it adver-
tises its local information density sample for this item, sl

i,j(m),
by setting a query header field (named SAMPLE DENSITY) to
such value. A node n receiving the query can then compute
its distributed sample for the j-th step and information item i,
sd

i,j(n), by averaging all received values:

sd
i,j(n) =

∑
m∈Mi,j(n) sl

i,j(m)

|Mi,j(n)|

where Mi,j(n) is the set of neighbor nodes which advertised
their local sample to node n, for information item i and
sampling step j, and |Mi,j(n)| is the set cardinality.

C. Overall information density sample

The overall density sample for information item i and
sampling time j, si,j(n), is computed by node n by simply
averaging the local and distributed contributes. The expression
of the overall information density sample is then:

si,j(n) =
sl

i,j(n) + sd
i,j(n)

2

Observe that nodes can advertise the local information density
sample they computed during sampling step j only during
the following step j + 1. As a consequence, at step j + 1,
a node n holds its own local samples up to the (j + 1)-th
sampling step, and distributed samples up to the j-th step.
Since mixing contributions corresponding to different steps
would be incoherent, si,j(n) is only computed at the (j +
1)-th step. This amounts to a delay of one sampling step in
the computation of the information density sample si,j(n).
However, if the employed sampling frequency is sufficiently
high with respect to the information density dynamics, as it
should be, such a delay does not affect the validity of the
estimate.

D. Filtering and information density estimate

A Moving Average (MA) filter is used to define the behavior
in time of the computed samples, in a way to replicate the real
behavior of cached information chunks.

The filter is built so that the value of each new sample
is kept almost constant to its original value for W sampling
steps since it was computed, after which it is exponentially
decreased. To correctly describe the behavior of cached chunks
in time, each filtered sample should ideally contribute to the
information density estimate for a period of time equal to the
average cache time of chunks at nodes, which is 1/µ. From
the above considerations, we must have: WTc = 1

µ , where Tc

denotes the duration of a sampling interval. It follows that the
sampling frequency is given by: fc = 1

Tc
= Wµ.

The analytical expression of the filter, returning the final
value of the estimate for node n, information item i and
sampling step j (j ≥ W), is the following:

δ̂i,j(n)=
W−1∑
k=1

(
1 + αW − αW−k

)
si,j−k(n)

+
(
1 + αW − α

) j∑
k=W

αk−W+1si,j−k(n) (1)

with 0 ≤ α ≤ 1. The first term of the right hand side of (1)
represents the contribution of the W most recent samples. The
second term causes the exponential decrease of sample values
that are older than W sampling steps.

In our implementation, we set: W = 100 and α = 0.5; the
values of W and α determine the filter impulse response as

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

13

depicted in Figure 2. Note that, the larger the W , the higher
the sampling frequency and the more often the information
density estimate is computed; thus a trade-off exists between
computation load and accuracy in following the dynamics of
the information density. The parameter α instead determines
how the “mid-age” samples are weighted: the smaller the α,
the greater the impact of the “mid-age” samples (as shown in
Figure 2); we highlight that too small values of α may lead
to significant discontinuities in the density estimate.

V. SIMULATION SCENARIO

Simulations were performed using the network simulator
ns2, where we implemented the information sharing applica-
tion and the information density estimation mechanism. We
tested the performance of Eureka in a vehicular environment,
using two realistic mobility models so as to simulate different
traffic conditions. The parameter setting and the two mobility
models are detailed next.

a) Settings: A vehicle enters the simulated scenario with
an empty cache. It requests an information item not in its cache
according to an i.i.d. Poisson process with parameter λ. We
point out that different request rates for different information
items could be considered as well, since our density estimate
process is performed independently for each item. The TTL
value for query messages is set to 10 hops; indeed, in [3] we
observed that a smaller value may reduce the probability to
find the information in the MANET, while a larger value does
not lead to any significant improvement. Cached chunks are
deterministically discarded 1/µ seconds after they have been
received.

Every information item comprises 30 chunks. Each query
contains up to C requests for chunks; its size is equal to
21 bytes plus 1 byte for each chunk request. When the
information density estimation process is employed, queries
include the SAMPLE DENSITY field (2-byte long) used by
nodes to advertise their local density sample, as well as
the ESTIMATED DENSITY field (2-byte long) reporting the
estimated density value for the requested item used for the
query forwarding decision. Each information message includes
a 21-byte header and carries one information chunk, whose
size is equal to 1024 bytes.

 1

 0.8

 0.6

 0.4

 0.2

 0

 50 60 70 80 90 100 110 120 130 140 150

F
i
l
t
e
r

I
m
p
u
l
s
e

R
e
s
p
o
n
s
e

Time (sampling steps)

α=0.1

α=0.9

Fig. 2. MA filter impulse response, with W = 100 and varying α

The information sharing application lies on top of a UDP-
like transport protocol. As already mentioned, the way the
information sharing application works makes it independent of
the network layer protocol. Comparison tests with DSDV and
AODV proved such a statement, as they returned almost identi-
cal results. The results shown in the next section were obtained
considering AODV. At the MAC layer, 802.11 in promiscuous
mode is employed. Information messages exploit the RTS/CTS
mechanism and MAC-level retransmissions, while query mes-
sages, of broadcast nature, do not use RTS/CTS and are never
retransmitted. The channel bandwidth is set to 11 Mbps, and
nodes have a radio range of 100 m.

b) Highway scenario: We consider a 5-km-long, straight,
unidirectional road, composed of three parallel lanes. A gate-
way node is located halfway along the road. On each lane
vehicle interarrival times are exponentially distributed with
parameter that depends on the lane, namely 4, 3 and 2
vehicles/s, respectively. As vehicles enter the highway, they
are associated to a desired speed, uniformly selected over a
range of values that again depends on the lane the vehicles start
on, namely [15 m/s,25 m/s], [25 m/s,35 m/s], and [35 m/s,45
m/s], respectively. Vehicles drive all the way down the road
until the end of the 5-km segment, where they are removed.
Along the road they interact with each other, according to two
realistic vehicular traffic micromobility models: the Intelligent
Driver Model (IDM), which regulates the vehicle acceleration
and deceleration, and the MOBIL model, which determines
lane changes and passing [7].

c) Urban scenario: We extended the vehicular mobility
model provided by the CanuMobiSim tool [8], introducing
traffic lights and stop signs at road intersections, as well as
a realistic behavior of vehicles approaching the intersections
[9]. As a consequence, queues of vehicles decelerating and/or
coming to a full stop near crowded intersections are also
modeled. We simulated the road topology for the city section
shown in Figure 3, which includes several road intersections
regulated by traffic lights or stop signs. Vehicles enter the city
section from one of the border entry/exit points, randomly
choose another border entry/exit point as their destination,
compute the shortest path to it and then cross the city section
accordingly, following the available road paths. A vehicle
entering the topology is assigned a desired speed, uniformly
chosen in the interval [10 m/s,20 m/s]. When a vehicle reaches
its destination, it stops for a random amount of time, uniformly
distributed between 0 and 60 s, then it re-enters the city
section. Vehicles stopped at the border of the topology are
temporarily inactive. Employing the micromobility models
mentioned above, on the selected road topology we observe,
on average, 70 vehicles traveling at a mean speed of 21 km/h.

VI. PERFORMANCE STUDY

We first outline the impact of the parameters on the system
performance. Then, we assess the accuracy of our information
density estimation on both the highway and the urban scenario.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

14

0 200 400 600 800 1000 x (m)

600

400

200

0

800

1000

y (m)
gateway point

traffic lights

entry/exit point

Fig. 3. Urban scenario road topology. Non-marked intersections are regulated
by stop signs

Finally, we investigate the effectiveness of Eureka in terms of
traffic reduction, query success and query solving time.

A. Impact of parameters

The impact of the system parameters on the overall perfor-
mance is as follows.

• The query generation rate, λ, obviously affects the query
traffic and, in turn, the information traffic.

• The cache dropping rate, µ, is inversely proportional to
the amount of information in node caches, and thus, to the
query success rate. Also, with high values of µ, queries
have to travel farther to find the information and, if not
properly directed, they generate duplicated responses.

• The number C of chunk requests per query affects the
time needed for a response and the amount of information
traffic if more than one node replies; again, targeting only
information-dense areas limits the congestion deriving
from an excessive number of duplicates. Furthermore, a
large C may lessen the effectiveness of the query lag
time, further increasing congestion.

• The information set cardinality, N , has an impact on the
traffic load, hence on the system performance, but it does
not affect the accuracy of the density estimate, since the
estimate is performed on single information items.

0

25

50

75

100

125

150

175

200

225

250

275

300

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fo

rm
at

io
n

de
ns

ity
 e

st
im

at
e

A
ct

ua
l i

nf
or

m
at

io
n

de
ns

ity
 [

co
pi

es
/m

]

Time [s]

actual
estimated

Fig. 4. Actual and estimated density of a generic information item as a
function of time, as seen by a network node travelling on the highway

B. Information density estimation

Our first goal is to ascertain the accuracy of the procedure
for information density estimation on which Eureka is based.
Note that the estimates and actual values reported in the
following plots have different numerical ranges since esti-
mating the exact value of information density would require
that vehicles know the geographical distance corresponding
to each hop distance. Furthermore, since Eureka just uses
the difference between estimates of the information density
computed at two points, it matters that estimates match the
trend of the actual density, not the absolute value.

In all simulation results reported here, we take the cardinal-
ity N of the information set to be equal to 15 and the number
C of requested chunks per query equal to 5. For each vehicle
we set the query generation rate λ and the cache dropping
rate µ at 0.006 queries/s and 0.025 drops/s, respectively. We
underline that several tests were performed with different
values of λ and µ, obtaining similar results. A comparison
of density estimate and actual density in a highway scenario
is provided by Figure 4. We followed 3 trips of a sample
vehicle as it travels on the highway (each trip is delimited
by a gap in the information density estimate, corresponding
to an inactivity period). Each trip duration is different since,
after being repositioned at the beginning of the highway,
a new speed is chosen and different traffic conditions are
encountered. The y-axis reports, on the left, the information
density estimated by the moving vehicle and, on the right,
the actual information density in copies/m that was computed
in a range of 100 m around the vehicle at each time instant.
The comparison in Figure 4 shows that the density estimation
behavior is a very good match of the actual density behavior.

We repeated a similar collection of estimates and density
values in the urban scenario; the results are presented in
Figure 5. To better understand the behavior of the information
density, the figure is added a strip marking the times when
the vehicle crosses an intersection (crosses), or reaches the
gateway node (filled circles). Intuitively, these spots exhibit
higher densities because of the vehicle queues at the intersec-
tions, and because of the presence of the gateway node. It can
be seen that each density peak is matched by an estimate peak,
confirming the accuracy of the estimation procedure.

Finally, we mention that we also compared the actual and
the estimated information density at fixed time instants, in
snapshots of the highway and urban scenarios (plots are
omitted here for the lack of space). Again, we observed an
excellent match of estimates and actual values trends in all
the considered cases.

C. Curbing the traffic load

We now look at the benefits that can be derived by exploiting
the density estimate to improve the system performance. Here
we compare the performance of flooding, mitigated flooding
(i.e., flooding with TTL and query lag) and Eureka in terms
of:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

15

TABLE I
PERFORMANCE UNDER THE HIGHWAY SCENARIO, FOR N=15, C=15, λ=0.003 AND VARYING µ

Query traffic [Mbps] Information traffic [Mbps] Solved queries (requests/s) Query solving time [s]

µ=0.005 µ=0.025 µ=0.005 µ=0.025 µ=0.005 µ=0.025 µ=0.005 µ=0.025

Flooding 0.8 1.0 11.1 10.4 5.1 4.4 46.6 51.2

Mitigated flooding 0.7 0.9 9.4 9.0 5.2 4.7 44.1 47.6

Eureka 0.06 0.1 4.6 5.2 5.3 5.3 35.5 40.3

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 600 700 800 900 1000 1100 1200 1300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

In
fo

rm
at

io
n

de
ns

ity
 e

st
im

at
e

A
ct

ua
l i

nf
or

m
at

io
n

de
ns

ity
 [

co
pi

es
/2

50
0

m
2]

Time [s]

actual
estimated

intersection
gateway node

Fig. 5. Actual and estimated density of a generic information item as a
function of time, as seen by a network node travelling in the urban scenario;
a strip at the top of the plot highlights the times at which the node approaches
intersections and gateways

• query traffic: the total amount of traffic ascribed to the
transmission (and replication) of queries in the whole
network; results take into account the additional density-
related fields in the query header for the case of Eureka;

• information traffic: the total amount of traffic ascribed
to the transmission (and replication) of reply messages
carrying the requested information back to query source;
results take into account also duplicated reply messages;

• solved queries: the number of queries per second that
receive at least a successful reply;

• query solving time: the average time period elapsed since
the generation of a query until the reception of the last
missing chunk at the requesting node; clearly only solved
queries contribute to these statistics.

We first consider the highway scenario, and evaluate the
above performance metrics for N=15, C=15, and different
values of query generation rate and information dropping rate.
We highlight that similar trends were observed by setting N
and C at different values.

Let us consider the results in Table I, obtained for λ=0.003
and µ=0.005, 0.025. Note that λ=0.003 and µ=0.005 corre-
spond, respectively, to vehicles generating a query per infor-
mation item about every 6 minutes and to a chunk caching time
of about 3 minutes. Also, given λ, an increase in µ leads to a
reduction in the amount of information stored at the network
nodes and, thus, to a more difficult content retrieval. As a
consequence, larger µ’s imply a growth in the query traffic and

TABLE II
PERFORMANCE OF EUREKA UNDER THE HIGHWAY SCENARIO, FOR N=15,

λ=0.003, µ=0.005 AND VARYING C

C=5 C=15 C=30

Information traffic [Mbps] 4.0 4.6 4.7

Query solving time [s] 52.8 35.5 33.4

query solving time for all the schemes under study. However,
comparing the performance of the three strategies, we observe
that, for both values of µ, flooding and mitigated flooding give
a query traffic that is one order of magnitude greater than
with Eureka. It follows that the information traffic is almost
doubled without Eureka: such increase is mainly due to a score
of duplicated reply messages that were elicited by as many
unnecessary queries that reached faraway nodes in areas where
the information was less dense. However, were those queries
really unnecessary? They were, according to the rate of solved
information queries and to the query solving times reported in
Table I. Indeed, for µ=0.005 Eureka provides a rate of return
of information items at a node requesting them that is slightly
higher than in the case of flooding-based strategies. With a
faster cache drop rate (µ=0.025), the improvement becomes
even more evident, due to the lesser query traffic, hence the
lower congestion level, that it causes. This is an interesting
behavior, which highlights how the performance of flooding-
based techniques in systems using a contention-based channel
access scheme, may severely degrade due to the collisions
that affect the query propagation. As for the query solving
time, we observe that Eureka allows significantly faster query
responses, thanks again to the lower congestion level that it
causes.

Overall, the results obtained in the highway scenario show
that a better outcome in terms of user satisfaction (i.e., higher
number of solved queries and lower query response time) is
achieved through Eureka, despite the great reduction in the
number of queries and, in turn, of reply messages.

As a last observation, we show the system behavior as
the number C of requested chunks per query varies. We set
λ=0.003 and µ=0.005, and report the results obtained with
Eureka in Table II. Only the information traffic and the query
solving time are presented, since, as expected, the values of the
other metrics do not change significantly with C. Interestingly,
the larger the C, the faster the query response but the higher
the information traffic. Indeed, when a large number of chunks
are requested with the same query message, two behaviors
can be observed. On the one hand, a node receiving the query

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 10 15 20 25 30 35

Q
u
e
r
y

t
r
a
f
f
i
c

[
M
b
p
s
]

Information set cardinality, N

flooding, µ=0.005
flooding, µ=0.025
mitigated, µ=0.005
mitigated, µ=0.025
Eureka, µ=0.005
Eureka, µ=0.025

Fig. 6. Query traffic as a function of the number of information items
available in the network, for different values of the dropping rate µ (urban
scenario)

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35

I
n
f
o
r
m
a
t
i
o
n

t
r
a
f
f
i
c

[
M
b
p
s
]

Information set cardinality, N

flooding, µ=0.005
flooding, µ=0.025
mitigated, µ=0.005
mitigated, µ=0.025
Eureka, µ=0.005
Eureka, µ=0.025

Fig. 7. Information message traffic versus the number of information items
available in the network, for different values of the dropping rate µ (urban
scenario)

replies by immediately sending all the requested chunks it
has in its cache. On the other hand, if multiple nodes owning
the information receive the query, all of them will reply by
returning a large number of chunks, thus causing an increase
in the information traffic. Based on these observations, in
the following we consider C=15, as a good value to balance
between information traffic and system responsiveness.

Next, we study the same performance metrics in the urban
scenario. We set C=15, λ=0.003 and µ=0.005, 0.025, while
the number N of information items varies. Figure 6 shows
that, when medium-large information sets are considered (i.e.,
10 items and more), the difference between the query traffic
recorded in the case of mitigated flooding and for Eureka is
around 100%, for both values of µ. The gain of Eureka with
respect to flooding is even higher. We also note that flooding
and mitigated flooding give very close results. Recall that, un-
der mitigated flooding, nodes receiving a query, but not owning
the information, further propagate requests for the chunks that
are not transmitted within the query lag time. For values of C
greater than 5, we observed quite bursty transmissions of reply
messages, with a duration potentially longer than the query lag
time. This implies that the effectiveness of the query lag time

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35

S
o
l
v
e
d

i
n
f
o
r
m
a
t
i
o
n

q
u
e
r
i
e
s

[
r
e
q
u
e
s
t
s
/
s
]

Information set cardinality, N

flooding, µ=0.005
flooding, µ=0.025
mitigated, µ=0.005
mitigated, µ=0.025
Eureka, µ=0.005
Eureka, µ=0.025

Fig. 8. Number of information queries solved per second versus the number
of information items available in the network, for different values of the
dropping rate µ (urban scenario)

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35

Q
u
e
r
y

s
o
l
v
i
n
g

t
i
m
e

[
s
]

Information set cardinality, N

flooding, µ=0.005
flooding, µ=0.025
mitigated, µ=0.005
mitigated, µ=0.025
Eureka, µ=0.005
Eureka, µ=0.025

Fig. 9. Query response time versus the number of information items available
in the network, for different values of the dropping rate µ (urban scenario)

is greatly reduced, unless large delays are introduced.
Figure 7 collects information traffic values and confirms

that a significant amount of extra information is generated
as a consequence of the additional queries. The smaller gap
(with respect to query traffic) between mitigated flooding
and Eureka is justified by the fact that mitigated flooding
propagates queries toward regions where information is scarce:
about twice the query traffic is generated by mitigated flooding
(compared to Eureka), while the reply messages are, on
average, a mere 30% more. For each scheme, as the dropping
rate µ increases, the information traffic increases as well, since
the information is retrieved farther from the requesting node
and several hops are necessary to deliver it. The only exception
is in the case of flooding and information set cardinality
greater than 25: this is because for µ = 0.025 there are
fewer replies, as a consequence of the high congestion caused
by the query traffic. A confirmation is provided by Figure 8
showing the solving rate. For µ = 0.005, the solving rates
of the three schemes are very close, although this result is
achieved by Eureka through a sizable reduction of query and
information traffic. For large information sets and µ = 0.025,
even lower solving rates are achieved in the case of flooding
and mitigated flooding, than with Eureka. Figure 9 presents the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

17

query response time. We observe that in general Eureka gives
results that are comparable to the performance of flooding-
based schemes, but it significantly outperforms flooding and
mitigated flooding for µ = 0.025 and an information set larger
than 20.

VII. RELATED WORK

The technical challenges of delivering information to ve-
hicles forming an ad hoc network are outlined in [2], while
content delivery and sharing are studied in [1]. The cooper-
ative downloading strategy in [1], named SPAWN, addresses
peer discovery, content selection, and content discovery. Peer
discovery, like our solution, leverages the broadcast nature
of the wireless medium thus allowing nodes to overhear
information about the content availability at neighbors. In [10]
an in-vehicle entertainment system for downloading of audio
and video traffic is studied; however the focus there is on
predicting the availability of the information, rather than where
the information can be found.

Relevant to our work are also the studies on service discov-
ery. In [11], [12], service discovery protocols for large-scale
MANETs are presented, which are based on the deployment
of a virtual backbone of directories within the network. Each
directory performs service discovery in its proximity, while
global service discovery is provided by the cooperative action
of the directories composing the backbone. Similar in scope
to our work is the solution in [13], where a service discovery
protocol aiming at an efficient usage of the network bandwidth
is presented. More specifically, the protocol involves the
transmission of service advertisements by each node that hosts
a service or knows that one of its neighbors is hosting it;
also, nodes cache the received advertisements for a given time
interval. Based on the cached advertisements, a node can know
at which hop distance a service may be found, or the nodes
to which the service request can be selectively sent.

With regards to routing, several solutions have been pro-
posed to reduce the routing overhead of on-demand protocols.
For instance, Location Aided Routing [6] and Query Local-
ization [14] limit the query flood by decreasing the number of
nodes receiving route queries. The mechanism in [6] restricts
the flooding of queries using GPS, while in [14] route requests
are forwarded only in those areas where old paths existed. In
the context of sensor networks, the study in [15] exploits the
natural information gradient exhibited by physical phenomena
to efficiently route queries toward the event source. Note
that our work significantly differs from [15] since one of the
main contributions is the definition of the information density
concept in MANETs and of the procedure to estimate it.

Finally, an early version of the basic functionalities required
by our system (the ones described in Sec. II) are described
in detail in our previous work [3]. As for the concept of
information density, we highlight that it is used also in some
studies on sensor networks, such as [16]. There, however, an
information density function ρ(x, y), is introduced to model
the position of source (positive values of ρ(x, y)) and sink

nodes (negative values of ρ(x, y)). In our work, instead,
the information density at a given location represents the
distribution of contents in the MANET.

VIII. CONCLUSIONS

We looked at a MANET as a peer-to-peer network where
mobile users may request information contents as well as
provide them to other nodes. We developed an efficient infor-
mation retrieval mechanism, named Eureka, that specifically
addresses the challenges posed by a wireless mobile environ-
ment. Eureka users estimate the information density in their
proximity and use it to direct queries toward areas where
the requested information is denser. Simulating a vehicular
environment with realistic mobility models we showed that: (i)
our information density estimate closely follows the behavior
of the actual information density; (ii) the traffic due to query
and duplicated information messages is greatly reduced, while
the number of solved requests and the system responsiveness
are preserved, if not even improved.

ACKNOWLEDGMENT

This work has been supported by the Meadow project.

REFERENCES

[1] A. Nandan et al., “Co-operative downloading in vehicular ad-hoc
wireless networks,” in Proc. WONS’05, St. Moritz, Switzerland, Jan.
2005, pp. 32–41.

[2] S. Ghandeharizadeh and B. Krishnamachari, “C2P2: Peer-to-peer
network for on-demand automobile information services,” in Proc.
GLOBE’04, Zaragoza, Spain, Sep. 2004.

[3] M. Fiore, C. Casetti, and C.-F. Chiasserini, “On-demand content deliv-
ery in vehicular wireless networks,” in Proc. IEEE/ACM MSWiM’05,
Montreal, Canada, Oct. 2005.

[4] Z. Cheng and W. Heinzelman, “Flooding strategy for target discovery
in wireless networks,” in Proc. ACM MSWiM’03, San Diego, CA, Sep.
2003, pp. 33–41.

[5] N. Chang and M. Liu, “Optimal controlled flooding search in a large
wireless network,” in Proc. WiOpt’05, Riva del Garda, Italy, Apr. 2005.

[6] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” Wireless Networks, vol. 6, no. 4, pp. 307–21, July
2000.

[7] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Phys. Rev., vol. 62,
no. 2, Aug. 2000.

[8] Canu project. [Online]. Available: http://canu.informatik.uni-stuttgart.de
[9] Vanetmobisim project. [Online]. Available: http://vanet.eurecom.fr

[10] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari, “PAVAN: A
policy framework for content availability in vehicular ad-hoc networks,”
in Proc. ACM VANET’04, Philadelphia, PA, Oct. 2004.

[11] U. C. Kozat and L. Tassiulas, “Network layer support for service
discovery in mobile ad hoc networks,” in Proc. IEEE INFOCOM’03,
San Francisco, CA, march 2003, pp. 1965–1975.

[12] F. Sailhan and V. Issarny, “Scalable service discovery for MANET,” in
Proc. IEEE PerComm’05, Kauai Island, Hawaii, Mar. 2005.

[13] D. Chakraborty and A. Joshi, “GSD: A novel group-based service
discovery protocol for MANETS,” in Proc. IEEE MWCN’02, Stockholm,
Sweden, Sep. 2002.

[14] R. Castaneda, S. R. Das, and M. K. Marina, “Query localization
techniques for on-demand routing protocols in ad hoc networks,” in
Proc. ACM MobiCom’99, Seattle, WA, Aug. 1999, pp. 186–194.

[15] J. Faruque and A. Helmy, “Gradient-based routing in sensor networks,”
in Proc. ACM MobiCom’03, San Diego, CA, Sep. 2003, poster.

[16] S. Toumpis and L. Tassiulas, “Packetostatics: Deployment of massively
dense sensor networks as an electrostatics problem,” in Proc. IEEE
INFOCOM’05, Miami, FL, Mar. 2005, pp. 2290–2301.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

18

